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THE SIMILARITY LAW FOR HYPERSONIC FLOW AND REQUIREMENTS
SIMILARITY OF RELATED BODIES IN FREE FLIGHT ‘

By FRANKM. H.mriumR, STANFORD E. 3TEICE, and THOU J. WONCJ

SUMMARY

% 8imihity law for nmuteady, inviiwid, hIypw8rm?_c @w

about &?emler threedimen.sional Aaptx is derived in term-sof
customary a~odynamic parameter. The conclu8i0ruIdrawn
from the potential andyd U8edin the dewelqnnenlof the law
are shown to be IXZ.Wfor rotatW@w. A direct c.mwegumce
of the hypemonic simihzrity law b that t?w ratio of th-elocal
8tfz4i4prawure to tti free-stream 8taticpremme h the 8ame at
corresponding points in timi.larjl.uw@d8.

fiey&wwni8 for dynamic+?imilarityof rtiated 8hapa in fre%
jh!ght,including the correlation of !Ywir$i.ghtpatlw,are obtairwd
using the aerodynamicform and momem%as comeiiztedby the
hypersonic similarity law. In add% to the condti of
hypersonic similimity, dynamti vimibi.ty dkpena%upon con-
ditions &rived from the inertial propertia of the bodies and the
immerting fluio%. In order to have dynumic timilm%y, how-
emr, rolling motions mud not occur in combination with other.
motwn8.

The law h examined for tieady .J?OW aboui relatedthree-
dimensimud8hape%. The re8ult8of a compututti inve&ga-
tion showed that the timdariiy law aa applied to nordifting
cones and ogiw h applicabb over a wide range of Mach num-
bers andjinenew ratio8. - In the 8pecial we of inclined bodi.a
of revolution, the law I% e2&miedto include 8ome @n@cad

efezts of the wiscow cro8s force. Re8ult8 of a limiied ape+
mental investigation of the prcmures acting on two inclined
con~ are found to clwck the law m ii apphh to bodies of
revolution,

INTRODUCTION

The hypemonic sirnilari~ law for steady potential flows
about thin airfoil sections and slender nonli.fting bodies of
revolution was first developed by Tsien in reference 1.
Hayes (ref. 2) investigated this law horn the standpoint of
analogous nonsteady flows and concluded that it would also
apply to nonpot ential flows containing shock wavea and
vorticity, provided the local Mach number was evegwhere
largo with respect to 1. He also reasoned that similitude
could be obtained in hype~nic flows about slender three-
dimensional bodies of arbitrary shape; however, the form of
the similarity law in terms of customary aerodywmic
parameters was not determined. Oswatitsch (ref. 3) investi-
gated the law for two-dimensional steady flow in the limiting
case where the Mach number tends toward infinity and,
hence, ceases to be a flow parameter. His formulation of the
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law, therefore, involves only thickness ratio and angle of
attack. Goldsworthy (ref. 4) investigated the effects of
rotation on the hypersonic similarity law for two-dimensional
steady flow. His results corroborated, in psxt, the previous
tidings of Hayes and showed the potential analysis of Tsien
to be valid.

AKIinvestigation of the law as it applies in nonsteady flow
was made by Lin, Re&.ner, and Tsien (ref. 5). In particular,
tie necessmy conditions for similari~ of hypersonic flow
about oscillating two-dimensional bodies were determined.
The analysis for more arbitrary motion of two- or three-
dimensional bodies is apparently not available.

Ehret, Rossow, and Stevens (ref. 6) investigated the hyper-
sonic similari~ law for steady flow about nodifting bodies
of revolution by comparing pressure distributions calculated
by means of the method of characteristics. They found the
law to be applicable over a wide range of Mach numbers and
thiclmess ratios. Their investigation did not, however,
include the effects of vorticity arising from the curvature of
the nose shock wave. Rossow (ref. 7) continued this in-
vestigation and found that the law was equally valid when
the effects of vorticity were included in the calculations.
These fbiings corroborated, in part, the observations of
Hayes and indicated that the law may be used with con-
fidence to investigate the aerodynamic characteristics for
steady flow about nonlifting bodies of revolution at hyper-
sonic speeds.

It appeam desirable, therefore, to attempt to unify the
different treatments of-the similarity law into a single formu-
lation. The primary purpose of this report is, then, to
determine the form of the hypersonic similarity law fo~ non-
steady flow about slender three-dimensional bodies of
arbitrary shape aridto present the results in terms of custom-
ary aerodynamic parameters. It is further undertaken
to examine the hypersonic similarity law in some detail as
it appliw to steady flow.

The possibili@ of obtaining a hypersonic similarity law
for correlating the aerodynamic forces and moments on
related shapes in free flight suggests a more general dynamic
problem, - that of correlating their motions with the aid of
this law. Hence, it is also undertaken in this report to
determine the requirements on the inertial properties of
related bodies and the immersing fluids in order that such
bodies may have similar free-flight paths, that is, dynamic
similarity.

1SnperrwksNAOA TN !2443,“’rhoSlmthrfty I&wL21HYPWSOIUOI?kIwAbout SkmderTfm&Ohmndml SMW” by Flank M. Hamaker,StanfordE. Nefco,andA. J. EEWB,Jr.
1961,ondNAOA TN 2331,‘The ShrdfSrltYlaw forNOMe=iY Hm3r8dc HOW%andRo~ for tboDynmnfmlf31mfhltyof FW8td BIXIIMfn FreeF@t)” by M M. He.mnker
ondThormqJ. WOW,1962.
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SYMQOLS

speed of sound
characteristic reference area of body, A=bi
characteristic width of body ,

side force
side-force coefficient,

+PoV2A
side-forca function

drag coefficient, ~P~,A

drag function

rolling-moment coefficient, ‘ox
moment

+PoV2Ab
rolling-moment function

lift coefficient, ~p~v~2A

lift function .
pitching “moment

pitching-moment coeilicient,
+poV2Ac

pitching-moment function

yawing-moment coefficient,
yqwi.ug moment

+poV:A b
yawing-moment function
speciiic heat at constant pressure
specific heat at constant volume
characteristic length of body
section drag coef6cient of circuhw cylinder

with axis perpendicuhw to the flow
mean Q=for a body of revolution

cbtpo
displaced-fluid-mass factor, ~

length of ilight path
viscous force or moment function
dimensionless perturbation potential function
general functional designation
body+hape function
dimensionlessbody-shape function
vector from the origin of the coordinate system

to any point on the body
unit vectors along coordinate axe9 z,g,z, re-

spectively

moments of inertia of body about the z,y,z
axes, rwpectively

hypersonic simi.kwitypW&-
meters

&,=~J Kp=;
J

parameters
z-z

l,m,n direction Cosin= of the unit outer normal
vector to the body surface

M Mach number

.MJ&M,

z
P
P,W’ “

R“”
R.”

r
8
t
U,V7W

v
X,y,z

X,Y,Z
a

P

‘Y

6

;,%1

0.

w
P

T

:’
+,!2
(II

o
0

1,2,3

moments acting on body abou’t z,y, z axes,
re9pectivelv

unit outer normal ~ectcr to surface of body
static presmre
ro%, pi-, and ywing velocities, re-

spectively
radius of curvature of flight path
cross Reynolds number based on maximum

body diameter and the component of the
free-stream velocity normal to the body
axis

radius of body of revolution at any station z
cross force per unit length
charactitic depth of body
components of body velocity along the Z,yjz

axes, respectively
resultant velocity
Cartesian coordinates fied relative to the

body
forces on body along z,y,z ascs, respectively
angle of attack
angle of aidealip

ratio of the specitlc heats, y=%
v

angle of roll
oriiice location on the teat cones
dimensionless coordinates corresponding to

z,y,z, respectively
time coordinate
mass of body”
density of the fluid

&,e
dimensio&9s time coordinate, —

c

perturbation potential function
potential function
alternati time variablea
angular velocity of the body

SUBSCRIPTS

free-stream conditions

viscous cross-force effects
ditTerent functions F, C., or 08, except ,aa

noted

SUPERSCRIPT

vector quantitie9

Except for symbols noted above, all variables used as
subscripts indicate pm”tial differentiation with respect to
the subscript va&able.

THE SIMILARITY LAW FOR NONSTEADY
THREE-DIMENSIONAL FLOW

DEVELOPMENT OF TEE LAW

The hypersonic &ariQ law is der&ed from the equations
of motion and energy and from the boundary conditions.
In deriving the law-, the following assumption’ me made:
(1) The Mach number of the uniform stream is large coni-
pared to 1; (2) the disturbance velocities are small compared
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to the free-stream velocities; and (3) the flow is of the
potmtial type. These assumptions imply that the analysis
is restricted to hypersonic flow over slender bodies at small
tingles of attack and to irrotational flows, respectively. A
was indicated in the introduction, the law has been extended
to rottitional flows by both Hayes and Goldsworthy. An
analysis is presented in Appendix A to show that the rota-,
tional effects in a three-dimensional nonsteady flow obey
the hypersonic similarity law as formulated by the potential
analysis. Hence, the conclusions derived from the analysis
based upon potential flow will also be valid for rotational
flow. The purpose of making the assumption of potential
flow is merely to simplify the analysis.

The coordinate system is fixed with respect to the body,
as shown in figure 1. Also shown are the possible angular
velocities of the body and the direction of the velocity vector
of the free stream. The angles have the conventional
positive sense of angles of attack and sideslip. Under
assumption (2), these angles must be small.

z

FIGURE I.+%hernatic diagram of orientation of body in flow,

The development of the law involves, iirst, derivation of a
simplified pot ential equation describing the flow, second, the
statement of the boundary conditions, and third, the’trsns-
formation of theseequations into nondimensional coordinates.

The simpMed potential equation is obttied from the
nonsteady equation of motion and the energy equation which
are written in the following potential form:

2(@m@=@,+ @,*@g@.+ @a@z@z) +

(la)X%%e+%$%e+%%)=o

These equations are expanded by expressing the potential-
function derivatives in the following perturbation form:

v,c# . Vop
@== vo—~—— .2 +4%

%=- VO19+%
%= V(la+$o,

%=foo

(2)

The local speed of sound a can be eliminated by combining
the expanded forms of equations (lb) and (la). The result-
ing equation can be simplified by neglecting higher order ~
terms keeping in mind that for hypersonic flows about
slender shapes q=, W, w, and G are small compared to V.
and that q=is small compmed to PYand q.. The simplified
potential. equation then assunm the following form:

The shape of the body can be expressed by the functional
relation

a(z,y,z) =0 (4)

The unit outer normal at a point on the body surface is given
by the vector

W=li+mj+nZ (5)

and the requimnent that the body be slender is satisfied by
the condition

1<<1 (6)

There are two boundary conditions which must be satis-
fied. The ilrst of them is that the perturbation velocity,
imposed by the presence of the body, must vanish at large
distances ahead of the body. Consequentlyj

P.= P~=P.=0 at z=— OJ ‘ (7)

The other boundary condition is given by the fact that the
flow is tangent to the body at the surface, that is, for no
angular velocity

N.r=o (8)

The angular velocity of a body will cause an apparent dis- ,
tortion of the velocity vector at the surface of the body. By
exprmsing the angular velocity in the form,

Zi=p*+gv+rx (9)

the velocity of each point on the surface of the body is then
given by the vector cross product

Gxx= (qz—@+ (m—pz)j+ (py-qz)z (lo)

The bound&y condition on the surface
becomes

(7–ZXZ).17=0

of the body then

(11)

Q
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After equation (10) is expanded.and combined with equation
(11), and higher order terms neglected in accordance with
equation (6), the second boundary condition assumes the
following form:

v@=- (Vofl-p”+m-pz) (7Y+
(VOa+q.+qx–py) QZ=O at G=O (12)

In obtaining the similari~ law for flow about related
bodies, the equations of motion and boundary conditions are
expressed in a nondimensional form. A nondimensional

. coordinate system is introduced by the following ai%.ne
transformation:

.
(13)

and a nondimensional perturbation potential function is
defied by the relation

where c, b, and t are a charactwistic length, width, and depth
of the body, respectively. Under the coordinate transfor-
mation given abovq. equation (4) tak@ me form

9(&~,r)=o (15)

By sub&itution of equations (13) and (14), equations (3),
(7), and (12) become, respectively,

lG’(f.+fu)+(&.[K7+(7–mL%-

(Y+U @ KXtf,+ (w Q KKJr+

‘%2)’’’”+9 1[
K,zf/+(Y– 1)K,’f,– 1 +frr “K.s+

K&r(Kct+K&)~=O (16)

where

- Kb=iMO ; (20)
o

K.=MO a (21)

()pb
KP=MO ~

.( )‘a=MQ %

(23)

(24)

(26)

It is seen then that, if two related bodies are flying with givm
motions and attitudes so that the parameters, equations (19)
through (25), are the same for both bodies, the flows are
characterized by the same function ~(&n,~,r) and are there-
fore similar. The requirements expressed by the non-
dimensional form of the body-shdpe function, equation (flti),
and the similarity parwqeters, equations (19) through (26),
therefore constitute the similsxi@ law of hyperaoniq flow,

A closer examination of the parameters K,, Kb, K=, and
.Kj reveak that an essentialproperty of similarity is that the
lateral dimensions and the slopes of a body with respect to
the flow direction “are in inverse proportion to the flight
Mach number. In fact, the remaining parameters K,, K,,
and K,, which relate to nonsteady motion of the body, can
be interpreted by means of the same property. k rolling,
for example,, points on the body surface perform helical
motions, and the quantity pb/Vo in equation (23) is simply
proportional to. the slope of the helix with respect to the flow
direction. This slope must be inversely proportional to the
flight Mach number”. Similar arguments may be applied
to ‘, and K,.

Be&use of the complexities of algebra involved, the effects
of angle of roll were not included in the previous equations.
Had they been included, ho~ever, the result would bo the
same as above with the additional requirement that the
angle of roll must be the same for the related bodies. Hcmce,
the additional hypersonic hilarity parameter is

K,=a (26)

CORRELATION OF AERODYNAMIC FORCRS AND MOMENTS

The correlation of aerodynamic forces and moments on
related bodies in unsteady hypersonic flows can be developed
by consideration of the pressure distribution over the bodies. .
The pressure relation is obtained from the energy equation,
equation (2), and is given in the following form:

When this exprwion is simplified (ii a manner paralleling
the development of the preceding section) to include only
higher order terms and put into nondimensional form, it

>
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reduces to n function only of the nondimensional coordinates
and the similarity parameters (for a constant y).

;=;([, ~,r, ~; &Z& Ku, Kit K, Km &, E) (28

It is clear from this relation that for similar flaws, the ratio
of the Iocal to the free-stream static pressure is the same at
corresponding points in the flow fields.a

The correlation of the aerodynamic forces and momenta is
then obtained with the aid of equation (28) by integration
of the approprkd e components of the pressure forces over
the related shapes. This correlation can be given in the
following forms:

MOCL= tii= dJK,, Kb,-Ka, Kfl, &, Kp, K,, K,)

M~CD= ~D= I?D(Ktj Kb, K., Kpj &, .&l Ke, K)

.-

M&= CO= CO(Kt, Kb, Ku, Ks, Ka, Kp, Kq, K,)

MOUm=&=d’,(K, . . . K,)+& &h(K, . . . K,)
o

0,= 5.=5.,(1<, . . . K,) +& H.$ti, . . . K,)

hloCl= fil= fi,(K, . . . K,)

(29)

It appears, from the equations for the pitchi~-moment and
yawing-moment functions of equation (29), that these two
functions cannot be correlated for related but otherwise
mbitrary body shapes. However, a carefti examination
of the order of magnitude involved in the analysis indicates
that the second term on the right in these expressionsbecom~
negligible in magnitude in all but two very special cases.
In the case of the pitching-moment function, both terms on
the right side become of the same order of magnitude when
the 1 and n components of the unit normal to the body
surfaco are very small. This condition corresponds to an
isolated vertieal fin as shown in figure 2 (a). If, however,
tho verticnl his mounfe’d on a body, or used in combination
with a body equipped with horizontal wings, the contribu-
tion of the vertical fin tQ the total pitching moment will be
very small indeed. The contribution of the second term in
the pitch.@-moment function for the entire body will, of

z zwx Y

(a)

&
Y

zL- Y

(b)
(a) Pitohing moment. (b) Yawing moment.

FIGIJnEI2.—Bodica exoluded from similarity considerations as applied
to pitching and yawing moments.

course, be correspondingly small. An a,rmlogous situation
exists in the yawing-moment function for an isolated w~m
(fig. 2 (b)) in which the 1 and m components of the unit
normal vector are both small. Nor most practical aero-
dynamic shapes, therefore, the offending terms can be
neglected, and correlation of the aerodynamic coefficients
canbe achieved as shown in the following relations:

MOCL= CL= t’L(Kt, Kb, “K., Kp, &, KP, Kg, K,) ‘

M;CD= ~== dD(Kt, K,, Km, ~, K& K,, &, K,)

ilL&Cc= ~c= &(K,, K,, K=, K@, G, Kp, Kg, K,)

MoCm= I?.= ~JK,, K,, Ka, K@, K,, Kp, K,, K,)

C.= &= 8n(K,, K,, K., Kfl, &, K,, K,, K,)

MOC,= (?,= 8,(K,, K,, Km,Ki Ki, Kp, % KJ .

(30)

.

DETERMINATION OF REQUIREMENTS FOR DYNAMIC WM.
~ARITY OF RELATED BODIES m’ FREE ~GHT

The requirements for dynamic similari~ of related bodies
in free flight are developed on the assumption that the forces .
and moments on such bodies are correlated by the law of
hypersonic similarity. In order to determine the conditions
for dynamic aimilari~ to be coexistent with hypersonic
similarity, the dynamic equations of motion should be “
transformed to the same dimensionless coordinate system
that was used in developing the requirements for hypersonic
similarity. In addition, the velocity” and force quantities
should be expressed in terms of hypersonic similarity p~m-
eters.

In this dynamic system, only those forces are considered
which correspond to the “power-off” conditions in free flight.
The coordinate axes =e taken to be principal axes of the
body so that the products of inertia vanish. The dynamic
equations of motion of the body are given by the relations

)
peI=_z—qr(&-I._z) =Mz

qoI~_V—pr(Iz_z—I=_z)=MV (32)

rel’._,-pg(I=_z-IJ =M, .

The translational and rotational velocities may be expressed
in twins of hypersonic simikmity parameters, the Mach
number, and the speed of sound of the free stream by the
relation9

U= GMO, V= —G& w=a.x=)

‘-mstatmmritscanhrnoele fortheratimOflwaftofw#remn VOIUOSof tamLMrature,&msIty,add Maob number.
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Similarly, the aerodynamic forces and moments are given ti
the relationsterms of the correlation functions by

x= W2Tb’pO)

‘=’+%?
‘=U’(Y’’P”)

‘Z=e”r%’””)
‘,=’W’2%’’P”)
‘.=enbM”(G2%”b’pO)

(34)

By substituting equations (33) and (34) into equations (31)
and (32), and by treating only that length of flight path
over which MOcan be considered constant, the following set

1“ d.lrg 1( I =qm)————_——_
KV_r dr Kz_z K>= Kb

IdK, llKK
(

——— ——-
)

—Pl=K~%
K._. dr K=_. K.-, K,

where KP is given by 3

K,=:

and where
c~D

‘=-’=1=-=

K.-v=~

K,_.=@
;Z

~=cbtpo ~
2

(35)

[36)

(37j

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

The initial conditions to this set of equations are the initial
valuea of the hypersonic similarity parameters.

If both hypersonic similarity and dynamic similari~ are
to be achieved, it is required that equations (35) through
(4o) be independent of the l$lach number as a separate
variable. The elimination of ~? from equation (38) is
impossible in the general case, even approximately, because

all the terms involved may be of comparable order of magni-
tude. Consequently, since equation (38) is the relation for
rolling effects, it is indicated that fright paths which include
rolling cannot be correlated by this method for obtaining
dynamic similarity. ‘ For motions that do not involve roll,
it is seen that dynamic similarity will exist for related shapes
if the hypersonic similarity pirameta-s and the dynamic
siniilarity parametem given in equations (41) through (44)
remain invariant. These dynamic similarity parameters re-
late the masses of the bodies and the immersing fluids, as
well as the distribution of the mass in the body.

For rolling motions only, correlation can again be achieved
but with a slightly d.iiferentset of parameters. In this case,
only equation (38) remains and can be rewritten aa

- “ &_= .-

so that correlation for pure rolling motions is now given by
the hypersonic similarity parameters and the parameter
K’>..

A familiar example of motions where rolling effects would
be absent is the case of motions confined to the plane of
symmetry of the body, the so-called longitudinal motions.
To extend the application of this law to the more general
case where there are lateral motions as well aa longitudinal
ones,’but no roll, it is necewary to have a suitable symnmtry
of shape and, to have the inertial properties satisfy the
relation

KV_v=Ks-z , (48)

. When these conditions are fulfilled, the flight poths of
relatecl bodies can be correlated. As an illustrative example,
the dfsturbed motions of related missile shapes can bo m-
amined. The lengths of corrc.spending portions of relotod
flight paths would be proportional to the corresponding
lengths of the shapes. This property can be used to relato
the amount of damping in the disturbed flight paths. As
shown in Appendix B, the radii of curvature at corresponding
points of the flight paths would be proportional to the product
of the body length and the flight Mach number. Some of
these points are illustrated in the example given in figure 3.

APPLICATION OF THE LAW TO PARTICULAR SHAPES IN
STEADY FLOW

E steady flow, the three similarity parameters Kp, K~,
and K, are zero and equations (3o) reduce to the following

‘(49)
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Iwo.74.0
//c =.300
L$/c.0300 a

M =8.0 (oJ .
/9c..l5o /“..— .—. ~
Lv5.J50
Ca.zcb do =Zdb-i da~

G( “--@“2Pb “

FIGURE3,—Related wing-body oam’binations at hypersonic speeds.

It is important to note that the correlation of the aerodynamic
coefficients given by equations (3o) was obtained on the basis
of two restrictions as to allowable body shapes. (See section
Correlation of Aerodynamic Forces and Moments and also
fig, 2). These restrictions apply equally well to equations
(49) ,

BODIES OF BEVOLUTION

l?or bodies of revolution, equations (49) reduce to 4

1’
ikf@L= &= EL(Kt,KJ

MOZCD=&l= @Kt/Ka) (50)

MOcm= d.= f5m(K,,KJ

where Kb is eliminated as it is identicil to Kt.5 It is apparent
from these relations that the corresponding force and moment
parameters have identical values for related bodies of revo-
lution, provided the corresponding similarity parameters
have identical values. It will now be shown that this
conclusion can be generalized to include significant effects
of the viscous cross forces on related inclined bodie9.

Theviscoua cross force arisea from the boundary-layer flow
transverse to the body axis. A method of estimating this
force along with the lift, drag, and pitching-moment co-
efficients associated with it has been” suggested by Uen in
referemm 8 and is presented in Appendk C. The resulting
expressions for these coefficients (see eqs. (C3) in Appendix C)
me transformed to the nondimensional
following relations are obtained:

itfo&,=&~,(& K=)

fMO9CDO= ~d~l (K, ~)

MoC~,= i?#’a(K,, ~)
}

For slender bodios of revolution of the type

form, and the

(51)

under considera-
tion, ddais primarily a function of the- l~ach number and
Reynolds number of the flow component normal to the body

mis. Consequently, them e~ressions can be reduced to
the form

MOC.,= &= 8.,(KJL,RJ 1 ,.
MJCDO= ~D,=~D,(KJL, R.)

}
(52)

where R. is the crow Reynolds number. For small angles
of attack, the cross Mach number is identical to K=. It is
clear, when comparing these relations with those of equation
(5o), that the lattei relations apply with equal validity when
viscous cross-flow effects are considered, provided that R.
is included as a similarity parameter.”

Nordh%ingcones and ogives,-In reference 6 an analysis
was performed to determine the limits of applicability of
the hypersonic similarity law for nonlifting cones and
Ogives.’ To determine this limit for cones, surface pressurw
were calculated using reference 9 and were plotted as a
function of the similarity parameter K, as shown in figure 4.
A single curve favoring the slend.w cones was faired through
the crdculatad points. It is apparent that the similarity in
pressure holds for a wide range of values of K, for slender
cones. If it is assumed that a pre.wuredeviation of 5 percent
from the faired c~e can be tolerated in using the sim.ilari@ “
law, then limits of similarity can be determined as a function

Q+f

0-=
0.
al

5
La
Lo
e
;

0 .4 .8 12 16 20 2.4 2.8 32 3.6 “
Slmllarlty parameter, Kf

Fmmw4.-Vwiation of pressure ratio, P/Po,with simiki~ parameter,
Kt, for nonliftfng canes.

4Ikrnuseof tbe oxfnl6yrnroe@yof bedfosof “mvelatfonjonly nngfes0[ Ma& are omsfdered. Tida Iattm cnmideratfonobviates a dfscusdon of form end moment oberwterfsth at
oaglw of sldcWEIor combfned$r@s of attaakand ddesllp, while roll, of mum, MS no mmnbrg. It fsdear.thq thetthesfrnflarftyperarnetersKpandK4areeMmfmWdfrorothfsarLeMs.

SIf tbo engfeof attdz b rare,K. fe@ zero,and the exrxmlon for the dregpermnekrreducesta a formeqrdrelentta tbet obtdned by Tsfen fn roferonm1.
eIt h wmrmd tbot the viscoasflow cnosicked hemdew not ~tfY ~UW tie P~W ~~d ffow

from thowflowenrsy b mPxlmP@3i
dkossd prevfeusly. Hen% thefmx andmomentc@IIcfenb remltfag

7It shoufdM noted that wlvfs orenot omotfy a rek+d set of bdfes pIovertheles they were ehceanfa tbb stmdydnca the wnfigamtfan h of fnter@ end the devfetionfn thlo-
dktribntion lenot ekmffkmt fors~~dor*
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of Mach number and fineness ratio c/t of the cone. The
- limits determined in this way are illustrated in figure 5 (a).

The shaded area indicates the regions of lMach number and
finenessratio where the similarity law as applied to pressure
on the cone will be in error 5 percent or more.

Siice the surface slope of an ogive is largw.t at the vertm,
the~es.sures at this point &odd provide a critic.altest for
similarity of pres9ure9. Accordingly, the limits of applic-
ability of the law for ogives were determined in reference 6
hm consideration of the pressures over a cone tangent to
the ogive at the vertex. Figure 5 (b) premmtsthe limits of
applicability for ogives as obttied by this method. These
result9 iUustr@e the conclusions of reference 4 that the law,

as applied to nonlifting cones and ogives, is applicable over
a wide range of Mach numbers and fienws ratios in spite of
the simplifying assumptions made in “the derivation.

A check of the applicability of the hypersonic similarity
law in a rotational flow field was performed in referenm 7
by comparing the pressure d~tributions, obtained by the
method of characteristics, over ogiv e cylinders at several
values of K,. The pressure -&tributions for two ogive
cylinders at a value of Kt of 2.0 axe presentad in figure 6
and serve to illustrate the general results obtained in refer-
ence 7. The high degree of correlation of pressuresin figure 6
indicates that the hypersonic similari~ law applies ‘m a
rotational flow field and verifies the analysis presented by
Hayes in referenee 2.

Lifting cones.—l’or bodies of revolution at angles of ai%
tack, a limited experimental.checkvws made in the Ames 10-
by 14-inch supersonic wind tunnel. Two con6shavingfineness
ratios of 3.0 and 4.9 wer6 tested at Nfaeh numbem of 2.75
and 4.46, respectively; thus, the value of Kt was 0.91.
Overlapping values of K up to 14° -wereobtained. Pressure
measurements were made at the locations shown in figure
7 for angle9 up to 5°. The results are shown in figure 8 as a
function of K. Agreement with the prediction of the
similarity law is generally observed, in tiat the valuea of
p/po for corresponding points on the two bodies lie essentially
along the same curve. The exception to this agreement is
on the lee sides of the cones (6=180°) where it is noted that
signiikantly ditlerent curves are defined. This difference

1

I

*
iQ
g
c
so
5

(a) Cone9. (b) Ogives
‘ FIGUDD 5.—Range of applicabtity of dmilarity law for nonlifting cones

and O@eS.

is believed-to be the result of the dissimilar flow separation
from the two cones, caus~d by the fact that identical values
of R. could not be obtained for the two cones at the mmo
value of .&. This difference in R, should not affect the
pressures appreciably where separation does not occur.

●

20 40 60 80 100 120 MO 160 180 200
Long/tudlnal coordinate, percent nose length

FIGURE 6.—Variation of presmre ratio, P/P~along nonlifting ogivo

cylinders for a value of the similarity parameter, Kj, of 2.0.
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(a) c/tu3.O
(b) c/f=4.9

(c) Oriiice location, q in transverse plane, A—A.
I?mum 7.—Location of oritlces on two coma tested at K~=O.91.
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1.8 I I
Flagged: M. = 4.46, cjl = 4.9
Unflagged: M =2.75, ~t = 3.0
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FIGURE 8.—Variation of pressure ratio, P/PO,with K& for two cones
tested at K*= O.91.

WINGSAND WINCi-B:DY COMBmATIONS

If, for sprtntie symmetric wings, only angle of attack is

considered, the similarity parameters I$g and K~ vankh
from equations (49) and only three of the aerodynamic
coefficients remain. The corresponding force and moment
functions me reduced to the following form: s

lkfOCL=fiL= t?L(Kt, .&, &)

M;CD=~D= fiD(K,,K,, ~]

}

, (53)’

fMOCm=em= ?@t, % E)

These relations also apply, of course, to wing sections. In
this caae, b and therefore Kb are infinite and it is seen horn

equations (16) through (18) that the terms involving Kb
vanish and the equations reduce to the two-dimensional
equations for hypersonic flow. The similarity parameter
K~ is thus eliminated from equation (53). This remdt is
equivalent to that presented in reference 1.g

Of practical importance is the conclusion to be drawn
from application of the dimensions equation of motion
(eq, (16)) and the dimensionless bound~ condition (eq.
(18)), to steady flow about thin wings at zero angle of yaw.
It is noticed in the equations that the parameter, Kb, always
appeam in the form

K,2P

()z ‘P.

If b iB of the same order of magnitude as c, then, consistent
with the other approximations mado in developing this
equation, the terms involving (K~/Kb)i are to be neglected.
Performing this operation, however, yields the equation of
motion for two-dimensional flow. Thus, it is indicated that,
if the aspect ratio is of the order of magnitude of one or
greater, hypersonic flow about wings may be treated ap-
proximately as a two-dimensional-flow problem. The latter
problem is, of course, relatively simple to solve.

From a physicnl point of view, this conclusion stems from
the fact that, in supemonic flow, the effect of a disturbance
d a point is contined to the conical zone formed by the

Mach lines from that point. For very high Mach numbers,
this zone of influence is a narrow region behind the dis-
turbance. Consequently, conditions along a streamline are,
for the most part, independent of the conditions along
adjacent streamlines.l” For thin wings in hypersonic flow,
therefore, it can readily be seen that the zone of influence of
disturbances caused by wing tips will, for example, be small
compared to the wing-area if the aspect ratio is greater than
one. The effect of the tip disturbances on the aerodynamic
characteristics of the wing will, of course, be correspondingly
small.

Wing-body combinations may be thought of merely as
irregular-shaped bodies. As such, the aerodynamic coeffi-
cients are correlated by equations (49) with the restictiom
discussed in relation to these equations. The illustrative
example, given in figure 3 in connection with the free-flight
motion of a wing-body configuration, can be m-examined on
the basis of steady flow. It is seen that in goipg from a
Mach number of 4 to a Mach number of 8, the wing and
body lengths are doubled, the angle of attack is decreased by
one-half, while the body thickness and wing spans remain
the same. The changes in some of the aerodynamic coeffi-
cients axe also shown in the figure.

CONCLUDINGREMARKS

The similarity law for nonsteady, inviscid hypersonic flow
about slender threedmensional shapes has been derived in
terms of customary aerodynamic parameters. The conclu-
sions drawn from the potential analysis used tQ derive the
law were found to apply also to rotational flows. & a
direct consequence of this law, it was found that the ratio of
the local static pressure to the free-stream static pressure k
the same at corresponding points in similar flow fields. With
the aid of this law-,expressions were obtained for correlating
the forces and moments acting on related shapes in hyper-
sonic flows.

It was found that the motions of related bodies in free
flight could be correlated us~~ the hypersonic similarity
parameters and additional parameters relating the inertial
properties of the bodies and the air densities. The dynamic
similarity of the free fright of related bodies can be obtained
for motions which include pitching and yawing but no
rolling. $’or pure rolling motions, similarity can again be
achieved.

In the case of steady flow about inclined bodies of revolu-
tion, the correlations of forces and moments derived from
the similarity law can be generalized to include the significant
effects of the viscous cross force.

The results of a computational analysis, using.the method
of characteristics, showed that the similarity law as applied
to nonlifting cones and ogiv~ is applicable over a wider range
of Mach numbers and fineness ratios than might be expected
from the assumptions made in the derivation.

As hRONAUTICAL LABOtiTORY,

NATIONAL ADVISORY Co anmrmm FOR &JRONMJTIC8, .

MOFFETT .l?mLD, CALIF., June 6, 1961.
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APPENDIX A

EXTENSION OF POTENTIAL FLOW ANALYSIS TO ROTATIONAL FL”OW

The hypersonic similarity law can be extended to rotational
flows by the method of Hayes (ref. 2). This extension is in
fact demonstrated by Hayes’ results. However, to under-
stand fully the reasoning involved, it is instructive to elabo-
rate on his &nalysis. Hayes showed that &e hype~onic
potential equation for steady flow about slender shapes was
identical to the nonsteady potential equation in o~e less
spatial coordinate under the transformation

z=aJl@ (Al)

In the case of two-dim&sional flow, the tiormation,

equation (AI.), dowsj for emunplej the upper surface of the

body profile to be replaced by the upper surface of a moving

piston as shown in figure 9. The piston motion must be

such that a given piston displacement V1 at time 01 wiU be

the same w the ordinate orJ the body profile at the coordinate

xl given by the relation xl =aJ@l.

‘1 ?’

(a) (b)

(a) Steady flO~. (b) Analogous nonsteady flow.
FIQurm 9.—Two-dimensional steady flow and analogous one-dimen-

sional nonetesdy flow.

In investigating the physical significance of this trans-
formation, Hayes pointed outI that its existence resulted
from the basic assumptions of slender bodies and large
Mach numbers Since, as a result of these assumptions, the
z component of the fluid velocity does not change appreciably
and is always much greater than the local speed of sound,
there is essentially no chance for disturbance to piopagate
in the z direction. This is the ~tial feature that pertits
the replacement of x by the time variable o and, hence, the
existence of an amdogous nonsteady flow.

Hayes further showed that in hypersonic flow about
slender shapm- the local Mach number remains large com-
pared to one, even in the presence of strong shock waves
caused by small surface inclinations. Consequently, the
consideration of the hypersonic flow about a slender body as
a nonstationary problem in one less spatial dimension re-
maw valid when shock waves and the resultant entropy
gradients are present.
. One further featie of Hayea’ analysis, which is not

explicitly stated in reference 2, is that similarity follows
directly from the esistence of the analogous nonsteady flow.

This feature is illustrated for two-dimensional flows as
follows: The motion of the nons,teady boundary (in this cam,
the piston face) can be expressed in the following dirnen-
sionlew form:

(A2)

Upon transforming to the two-dimensional steady flow sys-
tem, by the substitution of equation (Al) into the functional
relationship on the right side of equation (A2), we obtain

‘=fn(:fi)-fn‘A’
:=f. (+ _&

or

$= fn (~), Kt=constant (A4)

Equation (A4) expresses the conditions for which the non-
stiady flow system can replace a steady flow system; n“amely,
that the body profile must be expressible in a specitlc non-
dimensional forni and that the parameter, .K~, must be
constant for all profiles given by this form. These are, of
course, the conditions of hypersonic similitude in two-
dimensional steady flow. The extension of these cotiidma-
tions to three-dimensional steady flow is straightforward,

To extend these concepts and results to three-dimensional,
nonsteady flow, the nonsteady part of the flow may bo
considered, in the analogous nonsteady flow, as a nonsteady
increment on the aIready nonsteady boundary. This can bo
demonstrated with reference to the potential analysis aa
follows: If the transformation, z=aJ@, is used on tlm
equation for steady-state hypersonic flow in perturbation
form 1!

(A6)

there is obtained the equation

(A6)

By applying the same transformation to the nonsteady flow
equation

UIIIall theerJaetionsoftl+~, thewlnd mmemnde tocdnc.ldewiththe bedy-in ordarnot tiobmnretiemxmont.

960
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(A7)

with cm additional variable change of

!2=0+$ (A8)

the same equation (A6) is obtained yith + replaced by Q.
Hence, Hayes’ conclusions concermng steady-state, three-
dimensional flow should apply equally well to nonsteady,
three-dimensional flows.

APPENDIX B <

CORRELATION OF THE FLIGHT-PATH CURVATURE

Consider related bodies moving through properly related
fluids in paths of finite radii of curvature. Equating the
contrifugrd force to the side force, the following relation is
obtained:

VogP~= Co $ /JOVilA @l)

After rearranging in terms of similarity parameters, equation
(Ill) becomes

~=&KF ~~
A
—=constant @2)

The parameter Moe/R correlate the radii of curvature at
corresponding points of similar flight paths.

This conclusion is also true for curved flight in the vertical
plane.

APPENDIX c

FORCES AND MOMENTS DUE TO VISCOUS CROSSFLOWSON
BODD3SOF REVOL~ON

In reference 11, Prandtl demonstrated that laminar viscous
flows over infinitely long inclined cylinders may be treated
by considering, independently, the components of the flow
normul and parallel to the axis of the cylinder. Jones, in
reference 12, applied this concept to&he.study of,boundary-
l~yer flows over yawed cylinders. The work of Prandtl and
Jones suggests, as indicated by Allen in reference 8, that the
cross force on slender inclined bodies of revolution may be
estimated in the following manner: Each cross section of the
body is treated as an element of an infinite cylinder of the
same radius. The cross force per unit length on such a
cylinder is given by the following equation:

.,
8~=rc@OV02ti2 ff (cl)

The incremental lift, drag, and moment produced by this
cross force are then given by the relations

~t=Tc@v; SiJlsCY COSCY

dr~=rcd~v$ Si113CY

,}

(C2)

moment=~,j~vog Sid ~

Retaining leading terms in a and integrat&g over the body, ~
where r=r(x), the aerodynamic coefficients are given by the
equations

‘2&# OsC..=x o T dz

%dod .JC.,=x , T dz

gtdcd Oc.,=— sAc o
TXdx

1

where the referance area is proportional

(C3)

to the maximum
cross-sectional area of the body, and the reference length is
the body length. The coefficient i?dCis the mean Cd. for the
body of revolution, and’ haa therefore been taken outside
the integral.

1.

2.

3.
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5.
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